Role of miR-146a in Immune System and Autoimmunity

Bahram Moghimi¹ M.Sc., Saba Gharibi² M.Sc., Ehsan Farashahi Yazd¹*
Ph.D. Mohammad Taher Tahoori³ Ph.D., Seyed Mehdi Kalantar¹ Ph.D.

¹Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
²Department of Genetics, Faculty of Medicine, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
³Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

ABSTRACT

MicroRNAs (miRNAs) are small preserved non-coding RNA molecules that regulate gene expression post-transcriptionally by targeting the 3’ UTR of mRNAs for translational repression or degradation. The rising evidence has established the significant role of miRNAs within the regulation of immune system and the prevention of autoimmunity. MiR-146a has obtained an importance as a modulator of differentiation and the function of cells of the adaptive, as well as innate immunity rapidly. In this paper, we summarize the recent understanding of the role of miR-146a in adaptive and innate immune responses, as well as in autoimmunity.
Introduction

MicroRNAs (miRNAs) are non-coding RNAs which have a function in post-transcriptional regulation of gene expression by binding to sequences in the 3’ untranslated region (UTR) of specific target mRNAs [1]. They have emerged as the novel molecular regulators of numerous genes involved in normal immune responses, and the pathogenesis of inflammatory and autoimmune diseases. Also, they are known to regulate immune cells processes such as apoptosis, differentiation, and maturation [2, 3]. In 2010 two reports revealed the correlation between miR-146a and autoimmune diseases [4, 5]. Also, miR-146a has been shown to be an important modulator of innate as well as adaptive immunity cells [6-8]. In this review, we will discuss the recent understanding of the role of miR-146a in adaptive and innate immune responses, as well as autoimmunity.

1. MiR-146a pathway

Transcriptional factors, inflammatory mediators including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and microbial components such as bacterial lipopolysaccharides (LPSs) can activate miR-146 expression [9, 10]. Taganov et al. have shown that the up-regulation of miR-146a was observed in response to inflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β stimulation within LPS stimulation in human monocyte cells. miR-146 was also quickly up-regulated, and negatively regulated toll-like receptors (TLRs) signaling by targeting TNF receptor-associated factor (TRAF) 6 and Interleukin-1 receptor-associated kinase (IRAK)-1, which are crucial for proinflammatory signaling [9].

To understand the biological role of miR-146a, the mice have been created with a targeted deletion of this gene. MiR-146a is expressed mainly in immune tissues, and its expression can be induced in immune cells upon cell maturation or activation. Lack of miR-146a expression results in hyper-responsiveness of macrophages to LPSs, and also leads to an exaggerated inflammatory response in mice with endotoxin-challenged. The overexpression of miR-146a in monocytes has the reverse effect, contrary. Mice with deletion of miR-146a develop a spontaneous autoimmune disorder, characterized by multi organ inflammation, lymphadenopathy, and splenomegaly [11].

Monocytes overexpressing miR-146a shows a reducing inflammatory response. In contrast, stimulation of LPS was resulted in significantly diminished production of proinflammatory cytokines, including TNF, IL-6, and IL-12 in miR-146a knockout macrophages. These studies show that overexpression of miR-146a in cell lines will result in the reducing of proinflammatory responses [12, 13]. This data support the proposition that miR-146a plays a negative role in the control of inflammation in macrophages.
2. MiR-146 in the innate immunity

The innate immunity is responsible for the initial defense against infection by external pathogens such as microbial components; and it is predominantly mediated via myeloid cells. The presence of pathogens is generally detected by tissue antigen-presenting cells (APCs) via receptors binding to nonself-antigens such as microbial products. However, many families of receptors are known, the best categorized are the TLR and the IL-1 receptors. The APC is activated by the NF-κB pathway and ligation of pathogens to receptors leading to the production of type 1 interferons (IFNs) [14, 15].

MiRNA biogenesis is regulated via Inflammation through cytokines, antigens, or TLR ligands which can regulate specific transcription factors for modulating miRNA expression levels [14, 16, 17]. MiR-146a was reported as a key factor modulating the innate immune response. MiR-146a acts as a negative feedback regulator in LPS stimulation and virus infection; and suppresses TLR signaling pathways by targeting TRAF6 and IRAK1/2 in various innate cells such as microglial cells, lung epithelial alveolar cells, and monocytes [8, 9, 13, 18].

MiR-146 is induced in response to cytokines and pathogen products such as LPS in dendritic cells (DCs) and macrophages [9, 18, 19]. It is transcriptionally induced by these NF-κB in cells [9]. NF-κB has been reported to play a critical role in regulation of DC immune functions and maturation [20, 21]. Moreover, NF-κB mediates the protection of DC from apoptosis [22]. Interestingly, miR-146a is known to silence TRAF6 and IRAK1/2 [9, 12, 18, 23], resulted in inhibition of NF-κB activation [23, 24]. Moreover, miR-146 has been proposed to be an anti-
inflammatory miRNA in DCs [9, 18]. Interestingly, miR-146a is known to silence complement factor H (CFH), a key repressor of the innate and immune response [25].

3. MiR-146a and adaptive immune responses

The adaptive immune system involves the selective recognition and the removal of non-self by the T cell receptors on T cells and antibodies produced by B cells. The activation of T and B cells are complex processes tightly controlled at different points including miRNA-mediated gene regulation [26]. MiR-146a is much more abundant in various differentiated lymphocyte in comparison with naive B or T lymphocytes [27].

3.1 MiR-146a and T cell

The autoimmunity in miR-146a knockout mice correlates mechanistically with a loss of peripheral T cell tolerance. Activation of peripheral T cells in naive mice is often an indication of a break in immune tolerance. It is usually found in mice models of autoimmune diseases, which is determined in miR-146a knockout mice. The T cell lineage examination in miR-146a knockout mice has shown that a large fraction of peripheral T cells displayed an activated, effector status. Thus, it seems that lack of miR-146a expression can lead to a loss of peripheral T cell tolerance over time which correlates with the development of an autoimmune disorder in miR-146a–null mice [11]. MiR-146a is barely expressed in naive T cells In human lymphocytes, although it is highly expressed in memory T cells, and is induced upon T-cell receptor stimulation [28].

The regulatory T cells (Tregs) known as suppressor T cells, are a subpopulation of T cells, which maintain tolerance to self-antigens, modulate the immune system, and abrogate autoimmune disease. Tregs are immunosuppressive, and generally down-regulate or suppress proliferation and induction of effector T cells [29]. Repression of miR-146a expression increases numbers of Treg cells, and also impairs their function leading to breakdown of immunological tolerance with tissue infiltration in several organs, and massive lymphocyte activation [6]. Also, miR-146a has been shown to be up regulated in Th1 cells and abolished in Th2 cells throughout T-cell differentiation [30]. Recently a study has shown that miR-146a is highly expressed in Tregs and targets STAT-1. Consequently, it controls Treg-mediated suppression of IFNγ-dependent Th1 responses and inflammation selectively [6]. In Jurkat T cells, miR-146a has been reported to target Fas-Associated protein for modulating activation-induced cell death and IL-2 expression [7].

3.2 MiR-146a and B cell

JunMei et al. reported that miR-146a inhibition had no effect on the expression of IRAK1 and TRAF6 in B cells. This data suggest that the function of miR-146a in B cells does not include these two target molecules [31]. However, Boldin et al. stated that expression of mature miR-146a was found relatively high in peripheral CD19+ B
cells, the functional roles of miR-146a remained unknown in these B cells [11].

4. Multiple Sclerosis and miR-146a

Immune system damages the myelin of nerve cells of brain and spinal cord in Multiple Sclerosis (MS) [32]. The patients with MS have auto reactive T cell, mediating autoimmune response to myelin antigens, which results in both axonal degeneration and inflammation [33].

miR-146, which is related with immune responses, is at least two fold more abundant than in normal brain white matter in active MS lesions [34]. MiR-146a controls TLR through a negative feedback regulation loop involving down regulation of TRAF6 and IRAK1 levels [9]. In neuroinflammation, and TLR activation modulate the release of inflammatory cytokines [35]. Additionally, TLRs are expressed on cells of the central nervous system; and there is a marked increase in expression of TLRs in MS brain lesions and cerebrospinal fluid mononuclear cells [36, 37]. Further, both CFH and IRAK-1 deficiencies are observed in MS and in other hand, miR-146a targets signaling proteins involved in the innate immunity, including CFH and IRAK-1 [9, 25, 38, 39]. Interestingly, glial cells, which are responsible for axonal myelination have had significantly increased expression of miR-146a [40- 42]. Of further interest, viral infections of brain cells up-regulate NF-kB and by neurotropic viruses, as a result of over expression of miR-146a[43].

5. Systemic lupus erythematosus and miR-146a

Systemic lupus erythematosus (SLE), also known as lupus, is an autoimmune disease in which the immune system attacks the connective tissue. Type I IFN plays a very important role in the pathogenesis of SLE [44, 45]. Recently a study has revealed that miR-146a is a negative regulator of the type I IFN pathway by targeting the multiple key signaling proteins including, TLR-7/9, STAT1, TRAF6 and IRAK-1 in peripheral circulating leukocytes of SLE patients [5].

MiR-146a was profoundly decreased in patients with SLE against healthy controls. The overexpression of miR-146a in normal peripheral blood mononuclear cells greatly reduced the induction of IFN-α/β, and the inhibition of endogenous miR-146a increased the production of IFN-α/β in response to the activation of TLR-7. Additionally, there's a negative correlation between miR-146a levels and disease activities [5]. These data reveal that miR-146a levels may potentially offer a therapeutic target to SLE patients.

Epstein barr virus (EBV) infections have been implicated in SLE pathogenesis. EBV infection induced NF-kB dependent expression of miR-146a [46, 47]. These data suggest the potential role of this miRNA in EBV-mediated autoimmune pathogenesis.

6. Rheumatoid arthritis and miR-146a

Rheumatoid arthritis (RA) is an inflammatory disorder that primarily affects joints [48]. TNF-α and IL-1β, which are inflammatory cytokines, play an important role in RA pathogenesis [49, 50]. Up-regulation of miR-146a is reported in various cell types in RA,
where it is supposed to negatively regulate proinflammatory cytokines such as TNF-α and IL-17 [3, 4, 51]. Recent reports revealed that miR-146a expression was increased in CD4+ T cells, and was positively correlated with the levels of the TNFα and IL-17. Moreover, the increase in miR-146a expression may contribute to RA pathogenesis by suppressing T-cell apoptosis and enhancing the differentiation of IL-17 cells, respectively [2, 3]. Furthermore, miR-146a expression in CD4+ T cells negatively correlates with Fas-associated factor 1 (FAS-1) that regulates T-cell apoptosis [2]. Similarly, Curtale et al. [28] showed that miR146a is an anti-apoptotic factor which is modulating activation induced cell death [4]. In addition, TRAF6 and IRAK-1 were similarly expressed in RA and healthy patients, in spite of higher levels of miR-146 in RA patients. Consequently, miR-146 is unable to efficiently regulate TRAF6/IRAK-1, and as a result leads to the prolonged TNF-α production in RA patients [52]. A positive correlation between miR146a expression levels and disease activity, suggests the potential utility of miR-146a as a RA disease activity biomarker [4].

7. Sjögren’s syndrome and miR-146a

Sjögren’s syndrome (SS) is a systemic chronic inflammatory disorder which affects the glands that make moisture [53]. Pauley et al. found that miR-146a expression was increased in the peripheral blood mononuclear cells and salivary glands of the SS mouse, and it was expressively increased in SS patients compared to healthy controls [54]. MiR-146a was supposed to inhibit the production of inflammatory cytokines. Therefore, SS patients should decrease the production of inflammatory cytokines such as IL-1β and IL-18 under the existence of increased levels of miR-146a. In contrast, both cases were increased [55- 57]. Similarly, Zilahi et al. showed that miR-146a expression was increased in SS patients. However, interestingly, the significant overexpression of TRAF6 was observed, while the down-regulation of IRAK1 gene in peripheral blood mononuclear cells was reported[55]. MiR-146a accumulation in this autoimmune disease cannot be explained by its immunosuppressive nature in innate cells. Thus, more investigations are still needed to understand the role of miR-146a in SS.

Conclusions

The discovery of miRNAs has revealed a new side of regulation of gene expression with a deep impact on many biological systems. Studies in recent years have shown that miRNA-146a has a unique expression profile in cells of the innate and adaptive immune system. There is now increasing indication to suggest that miR-146a can be an important player in autoimmune diseases. In this review, we described the role of miR-146a as an important regulator of inflammation, and significant factor in pathogenesis of autoimmune diseases and valuable diagnostic markers. Furthermore, deregulated miR-146a expression has been related with several
autoimmune diseases such as MS, SLE, RA, and SS. However, miR-146a was decreased in peripheral blood mononuclear cells from human patients with lupus; it was increased in peripheral blood mononuclear cells from human patients with RA. Thus, the unique roles of miR-146a have to be recognized based on the cell type or disease type, not generalized items. Transgenic mouse with deletion of miR-146a can be used to investigating the role of this miRNA in the pathogenesis of autoimmune diseases. Besides, it will then be an important to determine whether manipulating the levels of expression of miR-146a has therapeutic benefits.

Conflict of Interest
The authors have no conflicts of interest.

Acknowledgement
There is no Acknowledgement to declare.

References

[38]. Nahid MA, Pauley KM, Satoh M, Chan EK. miR-146a is critical for endotoxin-induced tolerance IMPLICATION IN INNATE IMMUNITY. Journal of Biological Chemistry 2009; 284(50): 34590-4599.

[43]. Pauley KM, Stewart CM, Gauna AE, Dupre LC, Kuklani R, Chan AL, et al. Altered miR-
ROLE OF MIR-146a IN IMMUNE SYSTEM AND AUTOIMMUNITY

International Journal of Medical Laboratory 2016; 3(3): 150-158.

[57]. Zilahi E, Tarr T, Papp G, Griger Z, Sipka S, Zeher M. Increased microRNA-146a/b, TRAF6 gene and decreased IRAK1 gene expressions in the peripheral mononuclear cells of patients with Sjögren's syndrome. Immunology letters 2011;141(2): 165-68.