The results showed that the women with blood types other than O are more susceptible to preeclampsia (hypertension and proteinuria), a finding which is in line with that of the study conducted by Lee et al. [7]. The relationship between blood type B and preeclampsia was observed in our study. Franchini et al. noted a significant relation between blood group and thrombosis risk so that von Willebrand factor (VWF) in people with blood groups other than O (A, B, AB) was higher as much as 25 percent than blood type O. That is, the people with blood types other than O bear as much as 2.2 the risk of thrombosis than the people with blood type O, a risk which can increase as much as 7 times if complicated with other acquired and inherited risk factors. There is a higher risk of thrombotic events in non-O blood group compared with O blood group because the activity of ADAMS13 enzymes in non-O phenotype, which is von Willebrand enzyme, was less in comparison to blood type O, resulting in less destruction of VWF, hence, the thrombosis risk will increase as much as four or five times [8]. Furthermore, the hemostasis proceeds towards thrombosis or an increase in coagulation during pregnancy and a decrease in the usual body inhibitors like anti-thrombin III and S protein [9].
When coagulation cascades are aggravated in pregnancy, pregnant women with this blood type are more susceptible to clotting inside the vessels, and finally the pathologic reactions inside the vessels are aggravated because blood types and consequently preeclampsia increase [10-11]. In our study, blood groups A and B enjoyed the highest frequency of preeclampsia. Blood groups A and B secrete antitumor factors which can damage the veins. Moreover, A and B blood groups stimulate the coagulation process if compared with the blood group O although there has been found a relation between blood group O and infertility [12].
Conclusions
It seems that blood groups play an effective role in increasing the hypercoagulability of hemostasis system especially in pregnancy. In other words, blood types play a significant role in inducing thrombotic complications such as preeclampsia.
Conflict of Interest
Authors have no conflict of interest.
Acknowledgments
he authors would like to thank the women participating in the study especially those with preeclampsia and thank the Clinical Development Research Center of Allameh Behlol Hospital in Gonabad University of Medical Sciences for its advice.
References
[1]. World Health Organization; Maternal mortality. Fact sheet N. 348, May 2014. Available at:
http://www.who.int/mediacentre/factsheets/fs3
[2]. Reshmarani VH, Bennal A. Association between ABO blood type and pregnancy induced hypertension. Sch J App Med Sci. 2014; 2(6C): 3054-3056.
[3]. Than NG, Romero R, Meiri H, Erez O, Xu Y, Tarquini F, Maternal ABO blood types and the risk assessment of pregnancy complications. PLoS ONE 2011; 6(7): e21564.
[4]. Paterson AD, Lopes-Virella MF, Waggott D, Boright AP, Hosseini SM, Carter RE, et al. Genome-wide association identifies the ABO blood group as a major locus associated with serum levels of soluble E-selectin.
Arterioscler Thromb Vasc Biol. 2009; 29(11): 1958-967.
[5]. Hassanzadeh-Nazarabadi M, Shekouhi S, Seif N. The incidence of spontaneous abortion in mothers with blood type O compared with other blood types.
Int J Mol Cell Med. 2012; 1(2): 99-104.
[6]. Bottini N, Meloni GF, Finocchi A, Ruggiu G, Amante A, Meloni T, et al. Maternal-fetal interaction in the ABO system: a comparative analysis of healthy mothers and couples with recurrent spontaneous abortion suggests a protective effect of B incompatibility. Hum Biol. 2001; 73(2): 167-74.
[7]. Lee BK, Zhang Z, Wikman A, Lindqvist PG, Reilly M. ABO and RhD blood types and gestational hypertensive disorders: a population-based cohort study. BJOG. 2012; 119(10): 1232-237.
[8]. Franchini M, Franco Capra F, Targher G. Montagnana M, Lipi G. Relationship between ABO blood type and von Willebrand factor levels: from biology to clinical implication. Thromb J. 2007; 5:14.
[9]. Moores L, Bilello K, Murin S. Sex and gender issues and venous thromboembolism. Clin Chest Med. 2004; 25(2): 281-97.
[10]. Guleria I, Sayegh MH. Maternal acceptance of the fetus: true human tolerance. J Immunol. 2007; 178(6): 3345-351.
[11]. Bakkeheim E, Bergerud U, Schmidt-Melbye AC, Akkök CA, Liestol K, Fugelseth D, et al. Maternal IgG anti-A and anti-B titres predict outcome in ABO-incompatibility in the neonate. Acta Paediatr. 2009; 98(12): 1896-901.
[12]. Kamil M, Al-Jamal HAN, Yusoff NM. Association of Blood Types with Diabetes Mellitus. Libian J Med. 2010; 5: 4847.