[ Downloaded from ijml.ssu.ac.ir on 2025-11-19 ]

International Journal of Medical Laboratory 2018;5(3):164-172.

International Journal of Medical Laboratory

E\wm«nw

Shahid of Medical

Investigating the Potential Role of piIRNAs

in Male Infertility

Noorodin Karamit*M.Sc., Seyed Hamidreza Mirabutalebi*M.Sc.
Fatemeh Montazeri’Ph.D., Afshin Karami®*M.Sc.

!Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
2Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical

Sciences, Yazd, Iran.

3Department of Hematology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

ABSTRACT

Article history
Received 26 Dec 2017
Accepted 31 May 2018
Available online 28 Aug 2018

Key words
Epigenetic

Male infertility
piRNAs

Small non-coding RNA

Infertility is a reproductive-related disorder and different factors account for
its development. Male factors contribute to at least 20% of infertility.
Despite the efforts performed in this field, the causes often remain
idiopathic. Epigenetic factors such as small non-coding RNAs play
important functions in male infertility. Also, P-element induced wimpy testis
in drosophila-interacting RNAs, as a class of sncRNAs, are involved in
spermatogenesis. Therefore, they can be used as a novel and promising
approach in the diagnosis, treatment, and prognosis of male infertility.
However, this still requires further investigations. This is one of the first
studies that reviewed recent investigations on the potential role of piRNAs
in male infertility and in human population and can help to better
understanding of the etiology of these conditions and diagnosis of patients.
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Introduction

Infertility is described as an inability to
conceive after one year of unprotected
intercourse, with a total prevalence of 9%
[1]. Primary and secondary infertility has
been defined as childlessness and failure
to conceive in a woman who has already
had one child or more, respectively [2].
Infertility can occur in both genders and
in different ways. Genetic, anatomical,
immunological and endocrinological ab-
normalities can lead to infertility. The
factors affecting male infertility, include
quality, motility, sperm counts and
ejaculatory dysfunctions [3].

In 20% of infertile couples, there is at least
one male fertility defect, and can reach over
40% [4]. The main causes of male infertility
are varicocele (37%), semen disorders (10%),
testicular insufficiency (9%), obstruction
(6%), cryptorchidism (6%), and other
abnormalities (7%). Additionally, about 25%
of male infertility cases are unexplained,
being referred to as idiopathic infertility [5].
Many studies have examined the genetic
causes of male infertility, but only 15% of
infertility cases have been detected [6].
Consequently, there is still a need for a better
understanding of male infertility, and we
must consider other approaches to identify its
causes. Epigenetic is one of the promising
approaches that can partly explain the causes
of idiopathic cases. Therefore, studying the
epigenetic basis of male infertility may be

crucial in managing an infertile patient.

Discussion

The role of the epigenetic factors in male
infertility

The epigenetic modifications are alterations
in phenotype caused by mechanisms that do
not change the DNA sequence [7]. These
alterations are excluded in sperm for two
reasons. First, the occurrence of the
elimination of epigenetic marks in primordial
germ cells (PGCs). Second, the occurrence of
the genomic condensation and reorganization
in male germ cell nuclei [8]. The most
common epigenetic modifications include
DNA methylation, histone modifications,
transition  from  canonical histones to
protamines and non-coding RNAs (ncRNAS)
[9]. The process of adding a methyl group to
the 5' position on the cytosine pyrimidine ring,
called as DNA methylation, occurs in hot spot
regions (CpG islands) [10]. Abnormalities in
this process can affect significant processes,
including spermatogenesis, and may lead to
male infertility [11, 12]. Also, for replacement
of histones with protamines, several proteins
are involved, including P1 and P2. The
mutations affecting these proteins can lead
to sperm abnormalities and infertility [13].
The two main types of ncRNAs are
infrastructural and regulatory. The major
function of the infrastructural ncRNAs is in
translation and splicing, and include rRNASs,
tRNAs, and small nuclear RNAs. However,
regulatory ncRNAs are often implicated in
the epigenetic processes and include small
non-coding RNAs (sncRNAs) [14, 15]. The

International Journal of Medical Laboratory 2018;5(3):164-172. 165


https://ijml.ssu.ac.ir/article-1-208-en.html

[ Downloaded from ijml.ssu.ac.ir on 2025-11-19 ]

INVESTIGATING THE POTENTIAL ROLE OF piRNAs IN MALE INFERTILITY

SncRNAs act as the gene expression regulators
in various cellular processes. The most
important  sncRNAs are miRNA, siRNA,
piIRNA and IncRNA, their differences of
which are presented in table 1 [16, 17].

The piRNAs as a non-coding RNA

For the first time in 2006, a novel class of
small non-coding RNAs was isolated from the
mouse testis and the Drosophila germ cells
called P-element induced wimpy testis in
drosophila (PIWI)-interacting RNAS (piRNAS)
[18, 19]. The length of the piRNAs is about
26-33 nucleotides. About 86% of piRNAs
have a uracil deflection at the 5 end and
play a crucial role in spermatogenesis [20].
According to the origin of piRNAs, they can be
divided into three classes: a-piRNAs originated
from retrotransposons, b-piRNAs originated
from mRNA, and c-piRNAs originated from
IncRNAs (long noncoding RNAs) [21]. The
most common piRNAs are derived from
retrotransposons and are linked to Ago3
(Argonaute), PIWI and AUB (Aubergine)
proteins [22, 23]. The main function of piRNAs
in germ cells is the suppression of transposon
activity [24].

Biogenesis of piRNA

The main sites of the piRNAs distribution
are the animal testis spermatogonial cells,
ovarian oocytes and Drosophila follicle cells
(somatic cells).

There are two main pathways for the piRNA

biogenesis: In the germ cells, the AUB-

dependent pathway (secondary processing)
is active while in the somatic cells, the only
pathway for producing piRNAs is the PIWI-
dependent pathway (primary processing)
[25]. The primary antisense transcript of
piRNAs is preferably attached to PIWI
protein and produces the piRNA-induced
silencing complex (piRISC). The piRISC
cleaves the sense transcript of transposons at
positions 10 and 11 and generates the 5' end
of Ago3-associated piRNA. In the secondary
processing known as the 'ping—pong' cycle,
the AUB and Ago3 proteins are involved
[26]. Like PIWI, AUB protein plays a pivotal
role in the formation of the piRISCs and
produces the 5’ ends of piRNAs that are
associated with Ago3 [27]. Also, the Ago3
complex has two crucial functions: First,
Ago3 produces secondary piRNAs by
targeting Ago3-associated piRNAs. Second,
Ago3 produces the 5’ end of the antisense
piRNAs through the cleavage of antisense
piRNA precursors and then are loaded onto
AUB (Figure 1) [28]. The HEN1 protein
mediates 2'- O-methylation of the 3' end of
piRNA. In the mice, there are two PIWI
proteins including MILI and MIWI2 which
produce piRNAs through processing of
transposable elements (TEs). This occurs in
cytoplasmic granules known as pi-bodies and
piP-bodies [29].
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Table 1. The types of small non-coding RNASs (SncRNAs) and their distinctive features

NcRNASs Length  Main cell type Dicer-dependent Estimated number

Main functions

MiRNA? 19-25  Male germ cell Yes Less than 1000 Translational repression
SiRNAP 19-29 Oocyte Yes More than 10,000 mRNA cleavage
piRNA° 26-31 Various No More than 10,000 Transposon silencing

. Chromatin remodeling and
IncRNA‘ >200 Various No More than 4,000

transcriptional regulation

a: microRNA; b: small interfering RNA; c: PIWI interacting RNA; d: long non-coding RNA

primary piRNA processing

' | | P

Transcription

PIRNA precursor 5 p—) 3‘

Splicing

Primary piRNA 5¢
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&duuge
" sense transcript of transposon
A PIWI protein
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Fig. 1. Primary and secondary processing in the biogenesis of piRNA. The biogenesis of piRNA is performed in
two different pathways, which are related to each other. In the primary processing, PIWI protein is involved in
the formation of piRISC, while in the secondary processing, AUB and Ago3 proteins are used. More details are
provided in the text.

PIWI= P-element induced wimpy testis; piRISC= piRNA-induced silencing complex; AUB= Aubergine protein;

AGO3= Argonaute 3.

The role of piRNAs in male infertility

The piRNAs can play different roles in
biological processes, including sex determin-
ation, gene silencing, epigenetic regulation,
and cancer. One of the most important
functions of the PIWI-piRNA complex is to
protect the genome of gametes against the
transposon invasion and is performed through
silencing their transcripts [27]. Consequently,
piRNAs are usually useful for the human

genome, but the aberrant expression of genes

involved in the biogenesis can lead to changes
in the genome and the development of the
various disorders. Male infertility is one of the
disorders associated with piRNAs. In figure 2,
the most important research performed on male
infertility and piRNAs is summarized: Moloney
leukemia virus 10-like 1 (MOV10L1) is a gene
associated with the biogenesis of piRNA that
plays a role in the primary and secondary
processing [30]. The MOV10L1 can contribute
to the primary piRNAs for binding to the PIWI
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proteins. Some studies confirm that several
polymorphisms of this gene show a remarkable
increase in infertile men [31]. In human, the
relationship between four PIWI proteins (HIWI,
HILI, HIWI2 and PIWIL3) and male infertility
is shown. In 2010 and 2017, investigations on
the Chinese and Iranian population with non-
obstructive azoospermia independently revealed
a relationship between HIWI2 rs508485 (T>C)
and non-obstructive azoospermia and can be
considered as a risk factor for male infertility [32,
33]. Furthermore, transposons are transposable
elements that use the host genome to survive
and amplify [34]. The PIWI-piRNA complexes
act as genomic guardians of the gametes
against transposon invasion and target the
transposons by silencing transcripts. LINE1 is
a known retrotransposon. Studies on patients
with cryptorchidism have revealed that
infertility in patients is due to alterations
in the PIWI-pathway and derepression of
transposable elements [35]. Therefore, these
studies show that piRNAs may play a crucial
role in male infertility.

The potential role of piRNAs as a diagnostic
biomarker for male infertility

According to the World Health Organization
(WHO), diagnosis of male infertility is based on
the semen parameters which include the
following: motility, sperm concentration,
seminal volume, pH and morphology [36].
Some studies have indicated that the sperm
analysis cannot be used accurately to detect
between fertile and infertile men [37].
Hence, identification of non-invasive seminal

biomarkers can solve this problem. Cell-free

RNAs and sncRNAs are critical as non-
invasive biomarkers in controlling pregnancy
and detecting reproductive-related disorders
[38, 39]. In 2015, Hong and colleagues,
determined five piRNAs by examining
seminal plasma samples of infertile patients,
which can be used as diagnostic biomarkers
for the detection of infertile men [40]. Also,
another study on patients with idiopathic
male infertility who had experienced the
first intracytoplasmic sperm injection course
demonstrated that there is a relationship
between spermatozoa piRNA levels (piR-31704
and piR-39888) and sperm concentration [41].
As a result, these piRNAs are important
factors in the fertilization process.

The piRNAs and DNA methylation

DNA methylation, as an epigenetic marker, is
associated with many disorders. In germ cells,
methylation is implicated in the TE silencing,
genomic imprinting, and DNA compaction.
Investigations have revealed that the loss of
CpG methylation on LINEL in germ cells is
related to the dysfunction of the piRNA
pathway. Therefore, it is thought that this
pathway plays an important role in the
identification of active LINE1 elements and
the guidance of the methyltransferase
complexes for the methylation of active
elements [42]. Moreover, earlier studies have
shown that abnormal methylation occurs
in men with low sperm quality [43]. The
mutation in the genes involved in the piRNAS
processing can be associated with human

spermatogenic disorders.
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Fig. 2. The polymorphisms of the genes involved in piRNAs and male infertility. In
this figure, the most recent studies performed on the relationship between the piRNAs
and male infertility in humans has been shown, which are described in the text.
MOV10L1= Moloney leukemia virus 10-like 1; HIWI2= Human PIWI
protein 2; PIWIL= P-element induced wimpy testis

A recent study on peripheral blood samples of
infertile men has indicated that rs10773767
and rs6982089 were two single nucleotide
polymorphisms in PIWIL1 and PIWIL2,
respectively. These polymorphisms are allele-
specific methylation-sensitive [44]. Thus,
methylation changes in these genes are
associated with spermatogenic disorders.
Therefore, TDRD1 (a Tudor-domain-containing
protein) protein is involved in the regulation
of spermatogenesis by interacting with MIWI
[45]. The loss of this interaction can activate
the transposons [46].

Some variants of this gene are associated with a
risk of spermatogenesis defects and infertility
[47, 48]. Additionally, due to the relationship
between the modified pattern of TEs methylation
and male infertility [48, 49], these alterations
may be caused by the dysfunction of the piRNAs
pathway. Therefore, it is suggested that studying
the methylation patterns in the pathways of

PiRNAs processing can help to better understand
the etiology of male infertility.

The targeting of piRNAs as novel therapies
The sncRNAs, as one of the new therapies,
can be used for different disorders. Significant
advances have been made in the field of clinical
applications of miRNAs, such as the use
of Miravirsen (an oligonucleotide with 15-
nucleotide) in the treatment of the human
immunodeficiency virus infections [50],
miRNAs replacement and inhibition techniques
in the treatment of many cancers [51, 52]. Also,
based on the function of piRNAs and PIWI
proteins, there are two approaches to change
the piRNAs expression: the antibodies can
be useful against PIWI proteins at post-
translational levels while artificial piRNAs
are a good option for both transcriptional
and post-translational approaches (Fig. 3)
[53]. The anti-PIWI antibodies prevent the
formation of the piRISCs, hence, the piRNA
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expression can be changed. Moreover,
decreased or absentthe expression of genes
associated with piRNAs may lead to an
increased expression level of transposons. In
this case, the use of artificial piRNAs can be a
useful approach. Additionally, in germ cells,

transposons may alter DNA methylation

and induce methylation through artificial
piRNAs, that can lead to silencing of the gene
expression [54]. Therefore, they are important
in evaluating inherited epigenetic alterations.
However, these new approaches are in the

early stages and need more extensive research.

Anti-piRNA

antibody ‘

|

Artificial piRNA  Natural piRNA
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Fig. 3. The approaches of piRNAs targeting. A) Anti-P-element induced wimpy testis in
drosophila antibody. In this figure, the binding of the antibodies to PIWI proteins prevent
the connecting of these proteins to piRNAs and as a result, the piRISC (piRNA-induced
silencing complexes) complexes are not formed. B) Artificial piRNAs. When natural
piRNAs are reduced for any cause, the use of artificial piRNAs is a novel approach that
can target specific DNA or RNA by increasing the piRISC complexes.

Conclusions

One of the benefits of understanding the
epigenetic abnormalities is that epigenetic
modifications, unlike genetic mutations, can be
modified using specific drugs. Hence, with
the complete understanding of these changes,
treatment of epigenetic-related diseases can be
achieved. The sncRNAs are the most common
epigenetic regulators and their role is identified
in many disorders. Among sncRNAS, piRNAs
play a key function in spermatogenesis and are a
candidate for further investigations on male
infertility. The studies presented in this review

revealed that investigating the role of piRNAs in

male infertility can be useful for many causes:
first, determining a non-invasive biomarker for
early detection of male infertility, second,
discovering the causes of idiopathic male
infertility. Also, piRNAs can be used to identify
types of infertile patients. For example,
piR-30198 is one of the piRNAs used for
this purpose. This biomarker is able to
distinguish between the two disorders related
to male infertility, namely, azoospermia and

asthenozoospermia [40].
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