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Epigenetic changes play an essential role in cancer pathogenesis. It has been
established by next-generation sequencing that more than 50% of the human
cancers carry mutations in mechanisms involved in the organization of the
chromatin and epigenetic regulations. DNA methylation is among the most
common epigenetic changes in leukemia. In contrast to DNA mutations which are
passively inherited from DNA replication, epimutations, for example, the
hypermethylation and epigenetic silencing of tumor suppressor genes, must be
actively maintained because of being reversible. Actually, the reversibility of
epimutations by small-molecule inhibitors provides the basis for the use of such
inhibitors in new cancer therapy strategies. However, DNA methylation
mechanism and its role in leukemia are not fully understood; there are some
serious concerns about the use of these drugs. In this study, we will review the
mechanisms of DNA methylation and the genes that are methylated in leukemia.
Moreover, new interesting findings of the epigenetic changes causeed by adult
T-cell leukemia/lymphoma have been fully discussed.
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Introduction

The science of epigenetics is the study of
inherited changes in phenotype or gene
expression [1]. Mechanisms of epigenetic
regulation in mammals contains DNA
methylation, post-translational modification of
histones, chromatin remodeling, micro-RNA
and long noncoding RNAs [2]. Aforementioned
mechanisms play a critical role in the
regulation of the molecular processes such as
transcription, replication, repair, and RNA
processing. DNA methylation is commonly
disrupted in diseases such as cancer [3]. Genes
that are hypermethylated in cancers include
those involved in the cell cycle (P14ARF, Rb,
p15INK4a, and p16INK4a), DNA repair-related
genes (BRCA1, MGMT) and Apoptosis-related
genes (DAPK, TMS1) [4]. Understanding the
underlying mechanisms involved in the
regulation of the epigenetic can be a great help
in the diagnosis and treatment of several
diseases. In general, DNA methylation tends
to inhibit transcription [5]. In cancers,
generally, tumor suppressor genes tend to be
hypermethylated and oncogenes tend to be
hypomethylated [6]. Many drugs have been
designed based on changes in epigenetic
mechanisms five of which are successful in
obtaining Food and Drug Administration
approval including Azacitidine (Vidaza),
Decitabine (Dacogen), Belinostat (Beleodaq),
Panobinostat (Farydak), Romidepsin (Istodax),
and Vorinostat (Zolinza) [7]. Interestingly, all
of them treat the diseases related to leukemia
and show the importance of this therapeutic

approach in leukemia treatment. In this article,

we will review recent findings on the role of
DNA methylation in leukemia progression.
Methylation mechanism

DNA methylation has been found in the
eukaryotic and prokaryotic genome being
involved in wvarious biological processes
including gene silencing, X chromosome
inactivation and imprinting [8]. Methylation
occurs in dinucleotide cytosine with
transmitting methyl group of s-adenosyl
methionine to position 5-cytosine by enzyme
DNA methyltransferase [9]. CpG islands are
often located in the promoter and the first exon
of genes [10]. In mammals, DNA methylation
occurs almost exclusively in CG dinucleotides
and is estimated to occur at ~70-80% of CG
dinucleotides all over the genome [11]. Of the
approximately 28 million CpGs in the human
genome, 60% to 80% are methylated in somatic
cells [12]. Methylation of CpG islands,
specifically those islands colocalized with
promoters or other regulatory regions, is usually
related to gene repression [13]. Methylation in
frequent regions such as centromeres is
significant for chromosomal stability [14] and is
also likely to suppress the expression of
transposable elements thereby having a function
in genome stability [15]. Mammals have 3
types of DNA methyltransferase (DNMT):
DNMT1, DNMT3a, and DNMT3b. DNMT1 is
the most greatly DNMT in cells and act is as the
principal maintenance methyltransferase to
methylate hemimethylated DNA after DNA
transcription and preserves parental DNA

methylation templates in daughter cells. In
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contrast, DNMT3a and DNMT3b act as de
novo methyltransferases to methylate entirely
unmethylated CpG sites [16]. Identification of
the exact role of DNMT3A in controlling the
expression of the genes involved in
hematopoiesis is an important issue in this
background since the decreased or increased
activity of this enzyme causes irreversible
complications in myeloid precursors as well as
the incidence of malignancy [17].

DNA methylation in leukemia

Myeloid leukemia

Myeloid leukemia includes acute, chronic
and myelodysplastic syndromes [18]. Acute
myeloid leukemia (AML) is one of the most
common leukemias involving many countries.
Chronic myeloid leukemia (CML), which is
indicated by t (9; 22) (934;q11)/ BCR-ABL and
patient treated with imatinib, can survive for
many vyears [19]. However, a number of
patients are resistant to this drug, and this
indicates the role of other gene changes in
addition to t (9; 22) (q34;g911) [20]. BCR-ABL
in these patients and myelodysplasia syndromes
have dysplasia changes and a lot of patients
ultimately get acute leukemia [21]. Here
we have mentioned some of the genes that
are being methylated in these disorders.
Genetic defects and also hypermethylation
can contribute to the initiation and
maintenance of AML. Hypermethylation of
tumor suppressor genes is a commonly
deregulated mechanism in AML and CML [22].
Acute myeloid leukemia

The E-cadherin gene (E-cad) is located on
chromosome 16¢g22.1 and is often named a

“‘metastasis suppressor’’ gene because the

E-cadherin protein can suppress tumor cells
invasion and metastasis [23]. E-cadherin
expression is necessary for erythroblast and
normoblast maturation. Cadherin gene
hypermethylation has been detected in DNA of
78% of patients with leukemia, containing both
acute and chronic types (AML, Acute
lymphocytic leukemia (ALL), and chronic
lymphoid leukemia (CLL) actually both
alleles of the E-cadherin gene are often
hypermethylated [24].

CXXC5 is located on 5g31.2, a region
recurrently deleted in AML with del (5q) [25].
CXXC5 mRNA was down-regulated in AML
with MLL rearrangements, t (8;21) and GATA2
mutations as a mechanism of CXXC5
inactivation [26]. Patients with CXXC5
expression under the medial level had a lower
relapse rate and better overall survival, of
course, regardless of cytogenetic risk groups
and known molecular risk factors. Lower
CXXC5 expression was associated with up-
regulation of cell cycling genes and co-down-
regulation of involved genes in leukemogenesis
(WT1, GATA2, MLL, DNMT3B, RUNXL).
CXXC5 inhibit leukemic cell proliferation and
Whnt signaling and impress the p53-dependent
DNA damage response [27]. Epigenetic
modifications, such as hypermethylation DNA
as well as transcriptional regulation by factors
like GATA2 and WT1 might contribute to
aberrant CXXC5 expression in AML [28].
Metallothionein 111 (MT3) is a tumor inhibitor.
MTs have been proposed to play significant
roles in protecting against DNA damage,

apoptosis and oxidative stress [29].

155 International Journal of Medical Laboratory 2019;6(3):153-165.


http://dx.doi.org/10.18502/ijml.v6i3.1396
https://ijml.ssu.ac.ir/article-1-298-en.html

[ Downloaded from ijml.ssu.ac.ir on 2025-11-22 ]

[ DOI: 10.18502/ijml.v6i3.1396 ]

P. Bagheri et al.

Overexpression of MT3 may inhibit
proliferation and stimulate apoptosis in
AML cells. Epigenetic inactivation of MT3
via promoter hypermethylation has been
detected in both AML cell lines and
pediatric AML samples. Patients with
methylated MT3 have displayed lower levels
of MT3 expression compared to those with
unmethylated MT3 [30].

In AML cells, the EphB1 transcript was
reversely correlated with EphBl promoter
methylation [31]. The presence of EphB1
allowed EfnBl ligand-mediated p53 DNA
binding, leading to the recovery of DNA
damage response cascade by the activation of
ATR, Chkl, p53, p21, p38, CDK1tyrl5, and
Bax, and down-regulation of heat shock protein
27 and Bcl2. Comparatively, the reintroduction
of EphB1 expression in EphBl-methylated
AML cells increased the same cascade of
ATR, Chkl, p21, and CDK1tyrl5, which
consequently induced programmed cell death.
Interestingly, in pediatric AML, EphB1 peptide
phosphorylation and mRNA expression are
actively suppressed, and a considerable
percentage of the primary AML has EphB1
promoter hypermethylation [32].

GATA-1 and PU.1 are two significant
hematopoietic transcription factors that
mutually inhibit each other in progenitor cells to
direct entrance into the erythroid or myeloid
lineage, respectively. PU.1 is controlled during
myelopoiesis by binding to the distal URE
enhancer whose deletion leads to AML.
Moreover, GATA-1 together with DNMT1
mediates the suppression of the PU.1 gene

through the URE. Suppression of the PU.1 gene

includes both DNA methylation at the URE and
its histone H3 lysine-K9 methylation and
deacetylation as well as the H3K27 methylation
at extra DNA elements and the promoter [33].
Chronic myeloid leukemia

The SHP-1 gene is situated on human
chromosome 12pl13 and is a non-receptor
type protein-tyrosine phosphatase negatively
adjusting growth-promoting signaling molecules
[34]. Up-regulated DNMT1 may contribute to
the disease development in CML by inducing
improper hypermethylation of SHP-1 promoter.
Decreased expression of SHP-1 may play an
essential role in the progression of CML to blast
crisis [35].

The human Homeobox (HOX) gene regulates
the progression process, hematopoietic
differentiation, and leukemogenesis. Silencing
of HOX genes by DNA methylation is thought
to disrupt the normal progression of blood
cells and therefore be involved in leukemic
transformation [36]. Increased epigenetic
silencing of potential tumor inhibitor genes
correlates with disease development in some
CML patients treated with Imatinib and
this suggests relevance between epigenetic
silencing and resistance progression. HOXA4
hypermethylation is related to a higher risk
for Imatinib resistance [37]. Another study
indicated HOXA4 promoter hypermethylation
in CLL and AML [38]. The repression of
HOXA4 expression by hypermethylation
induced gene silencing can be one of
the potential mechanisms in BCR-ABL
independent pathway inducing Imatinib

resistance in CML patients [39].
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PU.1 is a member of Ets family transcription
factor which plays a principal role in the
progression of lymphoid and myeloid cells
and regulation of expression of lineage-
specific genes [40]. Down-regulation of PU.1
expression at the MRNA and protein levels has
shown a relation with aberrant methylation.
Aberrant methylation has shown the promoter
region of transcription factor PU.1 in CML
patients both in chronic phase and blast crisis
phase. Methylation of the proximal promoter of
the ABL1 oncogene is a prevalent epigenetic
alteration associated with the clinical
development of CML. ABL1 methylation
has showed a majority of colonies from blast
crisis, but not chronic-phase CML. Specific
methylation of the Ph-associated ABL1 allele
accompanies clonal progression in CML [41].
Myelodysplastic syndrome

Glutathione peroxidase 3 (GPX3) located on
the 5023, plays an important role in preventing
oxidative damages by reducing extra reactive
oxygen species [42]. GPX3 methylation has
shown 15% of MDS patients which is lower
than AML patients. GPX3 methylated patients
had a higher frequency of DNMT3A mutation
and have shown remarkably shorter overall
survival. GPX3 methylation is associated
with incompatible prognosis and leukemia
transformation in MDS [43].

Suppressor of cytokine signaling-1 (SOCS-1) is
a significant factor in the transition of
extracellular cytokine signals to the nucleus
and adjust cellular processes involved in cell
growth, differentiation and transformation
[44]. Aberrant methylation of SOCS-1 induces

transcriptional silencing in myeloid cells and

the activity of the Janus kinase/STAT pathway
and expression BCL2L1 increases [45].
Myelodysplastic/Myeloproliferative neoplasm
Characteristics of both groups of myelopro-
liferative diseases and myelo-dysplastic
syndromes are shown with the increasing
variability in cell count, cytopenia, and
morphology of dysplasia. These disorders also
involve epigenetic changes, including DNA
methylation listed below.

Chronic myelomonocytic leukemia (CMML)
p15INK4b is a regulator of cell-cycle ceased in
the G1 phase of the cell cycle through the
inhibition of cyclin-dependent kinase 4 (CDK4)
and cyclin-dependent kinase 6 (CDKG6) [46].
Novel small RNAs, including microRNA-29b
[47] and pl5-AS [48], are as regulators of
p15INK4b expression and pl5INK4b DNA
methylation simultaneous with repressive
histone modifications. Hypermethylation of
p15INK4b occurs in more than 75% of the case
of AML [49]. p15INK4b gene methylation
occurs mostly in high-risk MDS with an
increased tendency to advance to blast
transformation [50]. Aberrant p15INK4b gene
methylation occurs in up to 58% of the cases
of CMML and a high degree of methylation
has demonstrated a great decrease or nearly a
complete lack of pl5INK4b expression.
Upregulation of all three DNA methyltransferases
has been detected in CMML with a high degree
of p15INK4b gene methylation [51].

Juvenile myelomonocytic leukemia

Six genes including BMP4, CALCA, CDKNZ2A,
CDKN2B, H19, and RARB in JMML undergo
methylation [52] and four genes BMP4, CALCA,
CDKNZ2A, and RARB are significantly associated
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with poor prognosis [52]. Studies have shown
that DNA hypermethylation is related to poor
overall survival and a high risk of treatment
failure [53].

Lymphoid leukemia

Lymphoid leukemia has been divided into three
categories including B-cell leukemia, T-cell
leukemia, and NK-cell leukemia [54]. The
acute form of both B and T lineage can be seen
in both adolescence and childhood. The
common chromosomal anomalies in pediatric
ALL include t(12;21)(p12;q22)/ETV6-RUNX,
t(1;19) (q23;p13)/ TCF3-PBX1, (9;22) (q34;q11)/
BCR-ABL and t(4;11)(q21;923)/ MLL-AF4 [55].
In general, prognosis in children is better than
adults, and the rate of relapse in adults is higher
than that of children [56]. Moreover, DNA
methylation occurs in these disorders; and we
explain some of these below.

CLL is a chronic clonal disorder which is
characterized by progressive accumulation
of lymphocytes and clonal B cells arrest
differential in the naive B cell stage [57].
Common cytogenetic abnormalities included
del (13)(q12.3), del(17)(p13) and trisomy 12
[58]. Also, DNA methylation occurs in
these disorders some of which have been
explained below.

Adult T-cell leukemia (ATL) is one of the
important types of lymphoid leukemia which is
caused by human T-cell leukemia virus type |
(HTLV-I) [59]. ATL has attracted increasing
attention because of the new findings in the
signaling pathways and HTLV-1 caused
epigenetics alterations [60]. In this subsection,
epigenetic alterations, chromatin remodel-

ing, transcriptomic alterations, and genomic

alterations which are caused by HTLV-1 are
completely covered.

Acute lymphoblastic leukemi

P57KIP2 encodes a cyclin-dependent kinase
inhibitor (CDKI) that belongs to the CIP/KIP
family and is considered a putative tumor
suppressor gene [61]. Methylation of a region in
close proximity to the transcription start
position of p57KIP2 is related to gene silencing.
Aberrant methylation of p57KIP2 has been
observed at initial presentation and at relapse in
adult ALL and methylation of a cell-cycle
regulatory pathway involving p73, pl5, and
p57KIP2 has been detected as a subgroup of
patients with Philadelphia chromosome (Ph)- a
negative disease with poor prognosis [62].
Ras-association domain family 1 isoform A
(RASSF1A) regulates several essential
biological processes including cell-cycle
development and apoptosis [63]. P53 connects
the RASSF1A promoter, recruiting DAXX as
well as DNA methyltransferase 1 (DNMT1) for
DNA methylation, which eventually results in
inactivation of RASSF1A in wild-type p53
ALL cell and induces overexpression of DAXX
leading to enhanced RASSF1A promoter
methylation. p53/DAXX-mediated RASSF1A
methylation regulates murine double minute 2
(MDM2) protein constancy in ALL [64].

Adult T-cell leukemia

Kruppel-like factor 4 (KLF4) gene is a cell
cycle regulator and early growth response 3
(EGR3) gene is an essential transcriptional
factor for the excitation of Fas ligand (FasL)
expression. DNA methylation of KLF4 gene is
related to its silencing in ATL and EGR3 gene

is silenced by histone deacetylation rather than
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by DNA methylation showing a commensurate
increase in the methylation density of these
regions with disease development [65].
Polycomb-dependent epigenetic alteration in
ATL

NF-kB shows high expression in ATL that
results from a HTLV-I infection [66]. It has
been revealed that NF-kB plays several roles in
proliferation, inflammation, and especially anti-
apoptotic mechanism [67] all of which are
important in oncogenesis [68]. NF-«kB signaling
can be activated by NF-kB inducing
kinase (NIK) [69]. NIK can be targeted
and consequently regulated by miR-31.
Interestingly, the YY1 binding motif is located
in the miR-31 gene and causes polycomb
repressive complex 2 (PRC2) recruiting and
then suppression of miR-31 expression through
histone H3Lys27 (H3K27me3) trimethylation.
PRC2 consists of three core subunits: Eed,
Suz12, and Ezh2. Hence, by silencing miR-31,
Ezh2 can indirectly activate NIK and NF-«xB
signaling and lead to apoptosis resistance [70].
HTLV-1 oncoprotein Tax is an influential
activator of Ezh2 [71]. As a result, it can
suppress many genes including miR-31 and
KDM family, thus encoding the H3K27me3
demethylase, by affecting Ezh2 [72].

The effect of HTLV-1 proteins on chromatin
remodeling

It has been shown that HTLV-1 Tax can cause
chromatin remodeling by interfering with the
miRNA machinery [73]. miRNA microarray
analysis has revealed suppression of three
miRNAs (has-miRs-135b, 149, and 872) from
nine identified miRNAs for P/CAF, and also

shown down-regulation in specific miRNAs for

p300 including hsa-miRs-149, 872, and 873
after introducing Tax protein [74].

HTLV-1 can inhibit apoptosis by HTLV-1 bZIP
factor (HBZ) [75]. HBZ targets FoxO3a and so
leads to down-regulation of Bim and FasL [76].
For inhibiting FoxO3a, two mechanism have
been shown by Clerc et.al: HBZ interplay with
FoxO3a and inhibition of phosphorylated
FoxO3a nuclear export [77]. The first one is a
more important mechanism associated with
chromatin remodeling. Apoptosis can be
suppressed by the LXXLL-like motif of HBZ,
while interaction with FoxO3a can occur by the
central domain [78]. Moreover, the interaction
between LXXLL-like motif and the KIX
domain of histone acetyltransferase p300/CBP
has been reported, which results in a decrease in
the level of histone acetylation. Furthermore,
HBZ very likely plays an important role in
CpGs hypermethylation in Bim promoter and
causes long-term suppression of Bim gene [75].
HTLV1 caused transcriptomic alteration
miRNAs regulate the expression of a variety of
genes; that's why they can modulate apoptosis,
cell proliferation, cell-cycle timeline, and
signaling [79]. To evaluate the effect of HTLV-
1 on aforementioned biological activities,
miRNA expression in determined ATL cell
lines was profiled by Yeung et al. They
indicated up-regulation of six miRNAs and the
targeting of tumor protein 53-induced nuclear
protein 1 (TP53INP1) by two of them including
miR-93 and miR-130b. They concluded that,
miR-93 and miR-130b can increase cell
survival and proliferation by TP53INP1
suppression [80]. It has been established that

HTLV-1 Tax is associated with metastasis by
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activating NF-xB signaling. NF-xB can also
induce Fascin (FSCN-1). FSCN-1 is a 54-58
kilodalton actin-bundling protein and, on the
other hand, play an important role in migration
and metastasis [81]. Collapsin response
mediator protein 2 (CRMP2) can organize the
cytoskeleton and has a key role in migratory of
lymphocyte to the central nervous system [82].
The effect of HTLV-1 Tax on a greater
phosphorylation level and, as a result, higher
activation of CRMP2 has been revealed by
Varrin-Doyer el al. Furthermore, they showed
that the axis of CRMP2/PI3K/Akt is the key
pathway in increasing lymphocyte migration
and cytoskeleton organization [83]. In the end,
all of these results elucidate the aforementioned
axis having a major role in metastasis. The
effect of Tax protein on the SDF-1/CXCR4 axis
activation has also been observed [84].
Moreover, the SDF-1/CXCR4 axis was shown
as a central pathway in the migration of the
leukemic cells. Therefore, it could be as another
Tax-based metastasis mechanism [85]. Two
studies played crucial roles in broadening our
insight into the effect of the HTLV-1 on the
interferon and interleukin signaling. In the first
one, it has been revealed that interferon
regulation factor 3 (IRF3) can be regulated both
positively and negatively by two different
pathways. In a positive pathway, Tax activates
transforming growth factor-B-activated kinase 1
(TAK1) and then this kinase induces the
activation of the TBK1-IRF3 axis and surely
some IFN-stimulated genes such as CCL5 and
CXCL10. On the other hand, in the negative
pathway, the up-regulation of IRF4 can
suppress TAKL [86]. In another study, it was

revealed that Tax-depended NF-kB activation
can increase the expression of Interleukin-9 and,
as a consequence, the cell-proliferation in the
primary ATL cells [87].

Furthermore, it has been reported that more
expression of IFN-inducible genes in chronic
HTLV-1 infection not only fails to eliminate
the infection but interestingly can cause
HTLV-1-associated myelopathy/tropical spastic
paraparesis (HAM/TSP) because they cannot
down-regulate the Tax protein as a viral
transcriptional transactivator [88]. HTLV-1 P30
protein can change the expression of many
genes. Tylor et al. used microarray analysis and
showed a 2.5-fold enhancement in the expression
of 15 genes and a reduction in the expression of
65 genes [89].

HTLV1 caused genomic alteration

It has been revealed that HTLV1 can cause
genetic instability in established ATL cell lines
[90]. In one of the most important studies which
supports this idea, it has indicated that miR17
and miR21 targets the DNA-damage effector
OBFC2A-hSSB2 and these miRNAs can
themselves be downregulated by HBZ [91].
Chronic lymphoid leukemia

A study has shown that 22 genes undergo
methylation in CLL patients. These genes
include SOX11, DLX1, FAM62C, SOX14,
RSPO1, ADCY5, HAND2, SPOCK, MLL,
ING1, PRIMA1, BCL11B, LTBP2, BNC1,
NR2F2, SALL1, GALGT2, LHX1, DLX4,
KLK10, TFAP2 and APP and has shown that
IgVH mutational status or zeta-chain associated
protein-70 expression is not related to particular
methylation profiles, methylation of LINE and

APP is associated with a shorter overall
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survival, and methylation of LINE and SALL1 is
accompanied by a poor prognosis [92].
Diagnosis and prognosis

There are various methods to detect DNA
methylation containing methylation- specific
polymerase chain reaction which can monitor
the state of methylation of CpG on an island
[93]. Methylation-sensitive single nucleotide
primer extension evaluates the types of
methylation at specific CpG location.
combined bisulfite restriction  analysis
determines methylation levels in the locus-
specific gene with a small amount of DNA [94].
Methylight is a high-sensitivity method that
detects methylated alleles in the presence
of more than 10,000 nonmethyl alleles,
guantitative analysis of methylated alleles, and
enzymatic regional methylation assay which
determines the precise size of the methylation
concentration of the region under study [95].
MethylQuant is a method which can determine
the exact amount of specific cytosine
methylation in the genome complex and
reverse-phase high-performance liquid
chromatography determines 5-methyl cytosine
levels at low DNA levels [96].

Many studies have shown that DNA methyl-
ation can predict clinical outcomes and serve as
a marker for risk classification. In CLL, DNA
aberrant methylation is valuable for prognosis
and treatment. For example, methylation of
LINE and APP is associated with shorter overall
survival and methylation of LINE and SALL1 is
accompanied by a poor prognosis [97], or in
AML, patients with a high degree of CpG
methylation pattern have shown a shorter time

to relapse than low CpG methylation pattern

[98]. Furthermore, hypomethylation of the
regulatory region of PBX3 is associated with the
higher rates of relapse and shorter relapse-free
survival in AML patients while not associated

with overall survival [99].
Conclusion

Epigenome and genome are changed by several
cancers especially lymphoid leukemia and lead
to numerous drastic phenotypic alterations like
drug resistance and immune system escape.
The use of new technologies including next-
generation sequencing for analyses of global
genomics increases our knowledge about
lymphoid leukemia and mechanisms involved
in epigenetic alterations. Understanding the
epigenetic pathways and DNA methylation
mechanisms can help us find the Achilles heel
of the many cancer types. Therefore, a new
insight was established into the development of
the drugs that target molecules involved in
epigenetic alterations. Recent clinical trials
show that these drugs have great efficacy in
lymphoid leukemia treatment when used
with other therapeutic approaches such as
chemotherapy or especially immunotherapy. In
spite of the mentioned improvements, the
available epigenetic drugs have some potential
risks and develop new innovative epigenetic
drugs thus requiring more research. Moreover,
there is a critical need for more clinical trials

concernung these drugs.
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